Researchers successfully transform liquid deuterium into a metal

first_img This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. Pair claim they have turned hydrogen to metal Citation: Researchers successfully transform liquid deuterium into a metal (2015, June 26) retrieved 18 August 2019 from https://phys.org/news/2015-06-successfully-liquid-deuterium-metal.html More information: Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium, Science 26 June 2015: Vol. 348 no. 6242 pp. 1455-1460. DOI: 10.1126/science.aaa7471ABSTRACTEighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets.Press release (Phys.org)—A team of researchers working at Sandia National Labs working with another team from the University of Rostock in Germany, has succeeded in squeezing liquid deuterium into becoming what appeared to be a metal. In their paper published in the journal Science, the team describes their new technique which has brought researchers closer to the ultimate goal of creating solid metallic hydrogen. Schematic phase diagram of hydrogen. The figure shows the four known solid phases I to IV and two observed liquid phases, together with the predicted atomic liquid. Blue rings imply rotating quantum molecules, wiggly lines imply entangled rotor state, and solid bonds are where calculation shows a covalent bond. Credit: Science 26 June 2015: Vol. 348 no. 6242 pp. 1429-1430. DOI: 10.1126/science.aac6626last_img

Leave a Reply

Your email address will not be published. Required fields are marked *